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Abstract

Due to the imperative nature of addressing climate change, the energy transition is currently
underway, prompting the recognition of its urgency. Energy system optimisation models have
emerged as crucial tools to assist policymakers in formulating laws and regulations that facilitate
the transition towards carbon neutrality. While numerous models have been developed to
explore various scenarios and define long-term objectives, only a few models focus on optimising
the specific pathway to achieve these objectives. Many existing models lack the necessary time
resolution to capture the integration of intermittent renewable energies; or are not open-source,
creating a challenge in terms of transparency and reproducibility.

This paper introduces EnergyScope Pathway, an open-source and documented model that
addresses these limitations. It specifically optimises investment strategies for the whole-energy
system over a 30-year period, or more, and optimising its hourly operation. This approach al-
lows for a comprehensive evaluation of the effective integration of intermittent renewable energy
sources. The model has a concise and efficient formulation, enabling its execution on personal
laptops within approximately 15 minutes. By applying the model to the case study of Belgium,
which presents challenges due to limited potential for renewable energy, we illustrate the impor-
tance of four pillars: energy efficiency, renewable energies, sector coupling, electrification and
imports. The result pave the way to a new and incremental tool to support decision makers.
In comparison to non open-source models, we verified the model’s results with similar studies
and found consistency in terms of technico-economic estimations.

1 Introduction

While there is a vast consensus on the goal of achieving carbon neutrality by 2050, there is
no unanimity on how to achieve it. Some advocate a —sometimes blind— faith in technolog-
ical progress, while others advocate a major change —sometimes baseless— in consumption
behaviour. Within the realm of technologies, debates range from advocating complete elec-
trification of all energy requirements to merely replacing current fossil fuels with renewable
alternatives. The energy transition pathway will be the result of a compromise between each of
these views, where all the levers will be activated to a greater or lesser extent.

Energy system models of varying complexity are valuable tools for guiding policymakers and
projecting future trends. These models enable the exploration of different energy scenarios and
the assessment of their consequences based on the underlying assumptions. Specifically, techno-
economic models play a crucial role in identifying technically feasible pathways for the energy
transition while considering the associated economic costs. These models can be classified based
on two key factors: technical resolution and simulation horizon, as illustrated in Figure 1.

Increasing the technical resolution of energy system models often comes at the expense of
a shorter simulation horizon, and vice versa. For instance, day-ahead grid operation mod-
els prioritise accurate grid resolution and capacity reserves for uncertainties, but they may
not incorporate long-term market trends. Different model classes cater to various needs, with
decreasing technical resolution. These include machine-level control, network dispatch, unit
commitment, maintenance, power plant expansion, planning for new infrastructure, and sce-
nario analysis. Each class serves a specific purpose, from fine-grained control within a machine
to the exploration of multiple assumptions across different scenarios.

In accordance with the previous classification, models aimed at aiding decision-makers in
the energy transition primarily fall under the categories of planning and scenario analysis, with
a relatively lower technical resolution. Nonetheless, ensuring technical accuracy is of paramount
importance to ensure the effective functionality of future energy systems. Hence, these models

4



Figure 1: Model can be classified by their core focus: Operation or Design. These categories can
be broken down into subcategories. This paper focuses on the system planning and scenario analysis
models. Inspired from [1].

should meet the following requirements as a minimum: (i) assessment of intermittent renew-
able energy integration; (ii) accounting for all energy flows in different sectors, including the
measurement of greenhouse gas emissions in the energy sector; (iii) exploration of all available
options; (iv) consideration of investments throughout the transition process; and (v) ensuring a
reasonable computation time for analysing different trajectories. Additionally, to enhance result
reproducibility and user understanding, it is advantageous for such models to: (vi) maintain
transparency and preferably be open-source, accompanied by collaborative documentation.

These requirements can be transposed into criteria that a model should match: (i) it should
have an hourly resolution spanning a one-year time horizon; (ii) it should encompass the entire
energy system, including all types of demands (such as heat, electricity, mobility, and non-
energy1), as well as all resources, conversion processes, and storage technologies; (iii) it should
optimise the system design, accounting for all the options; (iv) it should have a long-term
investment horizon, spanning several decades; (v) its computational time should be reasonable,
typically less than one hour on a personal laptop; (vi) it should be open-source, with accessible
data and comprehensive documentation. These requirements are commonly found in reviews
of energy system models. In 2010, Connolly et al. [4] reviewed 68 tools, considering similar
criteria: (i-iv) and (vi), along with others such as the number of users and market equilibrium.
In 2019, Prina et al. [5] reviewed 12 “most established” models, focusing on criteria (i-ii) and
(iv). This review was followed by a classification where criteria (i-iv) were taken into account [6].
In 2021, Chang et al. [7] conducted a survey-based review of 42 models for energy transition
modelling, covering all criteria except computational time. Based on these reviews, Table 1
compares models based on all the previous criteria except the computational time (v). Indeed,
the latter is hard to compare as models aren’t apply to the same case study and the information
is rarely given. The table includes only the models that achieved partially at least four out of
the five criteria. The authors endeavored to refresh the model’s information by consulting the
model’s website and repository, yet there is a possibility that some information might have been
overlooked or omitted inadvertently.

1Non-energy demand is often omitted in models while it represents up to 10% of worldwide energy demand
and up to 20% in some countries [2]. Eurostat [3] defines the non-energy demand as ‘energy products used as raw
materials in different sectors, not consumed as a fuel or transformed into another fuel´.
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Table 1: Comparison of existing models that partially satisfy at least four of the six criteria (in alpha-
betical order). Legend: ✓criterion satisfied; ✓ criterion partially satisfied; ✗ criterion not satisfied. Data
from [4–7].

Model Ref. Hourly
Whole-
energy

Optimis.
invest. &
operation

Pathway
Open-
source

Calliope [8, 9] ✓ ✓ ✓ ✗a ✓
COMPOSE [10] ✓ ✓ ✓ ✓ ✓b

DER-CAM [11, 12] ✓ ✓cd ✓ ✗ e ✓ f

DIETER [13] ✓ ✓ dg ✓ ✗e ✓
E2M2 [14] ✓ ✓ cdh ✓ ✓ ✗i

EMPIRE [15] ✓ ✗ cdgh ✓ ✓ ✓b

Ener. Trans. Model [16] ✓ ✓ ✗ j ✓ ✓
EnergyPLAN [17] ✓ ✓ ✗ k ✗ l ✓f

energyRt [18] ✓ ✓ ✓ m ✓ ✓
EnergyScope TD [19] ✓ ✓ ✓ ✗ l ✓
Enertile [20] ✓ ✓d ✓ ✓ ✗ n

ESO-XEL [21] ✓ ✗cdgh ✓ ✓ ✓
GENeSYS-MOD [22] ✓ ✓ ✓ ✓o ✓
H2RES [24] ✓ ✗p ✓p ✓ ✓
iHOGA [26] ✓ ✗cdgh ✓ m ✓ ✓ b

IMAKUS [27] ✓ ✓cd ✓ ✓ ✗ i

OpenDSS [28] ✓ ✓ ✗ k ✓ ✓
Plexos [29] ✓ ✓q ✓ ✓ ✗i

PyPSA [31, 32] ✓ ✓ ✓ ✓ r ✓
RamsesR [34] ✓ ✓cdh ✓ ✓ ✓
ReEDS [35] ✗s ✓dgh ✓ ✓ ✓ b

TIMES [36] ✓ ✓ ✓ ✓ ✓t

aTopic is being discussed in the chat of their repository but not yet included in their documentation.
b‘Free under some special conditions´.
c Transport not accounted.
d Industry not accounted
e Not specified but time horizon is 1 year.
f Freeware.
g district heating network (DHN) not accounted.
h individual heating not accounted.
i Commercially (paid) licensed.
jThe ETM is a simulation model with a simple merit order ’optimisation’ for electricity, flex and heat.
k Simulation model.
l Yearly horizon without pathway.

m EnergyRT optimises investments only, while iHOGA conducts optimisation and simulation without specifying
timing or scope.

nOnly for internal use.
oLöffler et al. [22] applied a pathway transition, but the time resolution was increased to 12h and it uses 3

typical days over a year. [23] performed a multi-regional pathway (16 nodes) for the case of Germany from 2020
to 2050 with a time step of 5 years. However, the time resolution is 16 time slices representing 4 hours per day
and one day per season.

p In their review in 2021, [25] classified H2RES as a simulation model on power sector only. In their work [24]
presented a new version of H2RES claiming to optimise the power system and partially represent other sectors.
Their study applied the model to a transition pathway for Croatia. In the conclusion, it is claimed ‘H2RES
offers practically unlimited potential for functionality expansion since it is an open-source program´ which open
the doors for future developments to encompass new features.

qDoesn’t account for all sector but allow to implement them according to [30].
r[33] applied PyPSA to a whole energy system split in 37 nodes. Using a myopic approach, the model optimises

the energy transition with a 3-hours resolution).
sSeasonal time slice.
tModel is now open-source with limited access to data [37].
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From Table 1, four models almost check all the boxes (partially the pathway one): Cal-
liope, GENeSYS-MOD, PyPSA and TIMES. The TIMES model, short for The Integrated
MARKAL-EFOM System, is a well-established framework renowned for its capacity to gener-
ate comprehensive energy models. It encompasses a rich array of features, including support
for multi-cell modeling, pathway analysis, full-scale representation of energy systems, and the
consideration of market equilibrium dynamics, all of which facilitate thorough scenario explo-
ration. This model has a widespread adoption and has been utilized by worldwide institutions
such as the International Energy Agency (International Energy Agency (IEA)) or technical ones
such as VITO (Vlaamse Instelling voor Technologisch Onderzoek) research institute in their re-
search endeavors. Notably, TIMES was reported commercial in 2010 [4]. A more recent survey
conducted in 2020-2021 confirmed that the model was using a commercial interface [7]. Recent
developments by the IEA-ETSAP have resulted in a version that is compatible with open-source
solver CBC. In various studies conducted in different regions, including Canada, Sweden, the
EU, and Denmark, TIMES has been shown to utilize 12 to 32 time-slices annually [6]. It is
noteworthy that Haydt et al. [38] conducted a study focusing on the electrical sector, using 288
time slices, equivalent to a 12-day time resolution, highlighting the sensitivity of results to time
resolution. Regarding data accessibility, while some publications partially present the dataset
used, the overall accessibility of TIMES data remains an area of ongoing inquiry [37]. Calliope
is a ‘tool that makes it easy to build energy system models´ at different geographical scale. Even
if the framework offers the possibility of modelling multi-year systems, the authors didn’t find a
relevant publication on this topic. In fact, the model is typically employed for scenario analysis
with a specific focus on the electricity system. Previous studies have used the model to inves-
tigate the phasing out of fossil and nuclear energies in a multi-regional UK power system [39].
More recently, the model has been applied to analyse a scenario of a multi-energy district in
Switzerland [40]. Moreover, the model has been used with decades of weather data. However,
its application has been limited to assessing the impact of inter-year variability in wind and
PV on the results, rather than evaluating a transition pathway [41]. Similarly GENeSYS-MOD
presents some limitations. This model is an application of the open-source energy modelling
system (OSeMOSYS), itself represented as a model with a poor time discretisation and a heavy
computational burden according to [5]. Löffler et al. [22] applied the model to the world by
splitting it into 10 regions and most of the energy demand sectors. The time disaggregation
can be chosen by the user, for their application they used representative years with three days
and two time slice per day. Among the open-source models with an active community, PyPSA
is one of the best-performing, with a large and active community, development at the state of
the art, worldwide applications, and usage not only limited to academia. A study conducted
by Bartholdsen et al. [23] centered on Germany employed a representation comprising 16 time
slices for representative years. This choice was substantiated by the work of Welsch et al. [42],
which demonstrated that this level of temporal granularity yields consistent results in compar-
ison to hourly time resolution over a year. However, it is noteworthy that the utilization of
a limited number of time slices may simplify the optimization of storage technologies, espe-
cially those designed for inter-month energy storage. This simplification can be viewed as a
pragmatic approach to reduce the computational burden while over-simplifying the challenge of
accurately integrating intermittent renewable energy sources. Furthermore, PyPSA, a modeling
framework recognized for its robustness and active user community, has also been employed to
investigate scenarios related to myopic transitions [33]. Hence, it is worth noting that while
Calliope, OSeMOSYS, PyPSA and TIMES frameworks have the potential to be used for eval-
uating a transition pathway, the authors have not come across any publication that explicitly
demonstrates their application to such cases with an hourly time resolution over significant time
slices.
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Hence, it appears that none of the models of Table 1 fully meet all five criteria outlined
in the table, topped with the additional consideration of acceptable computational time. This
observation is consistent with the findings presented in [5] who identified two approaches for
optimising the energy transition pathway based on the six criteria. The first approach involves
running a snapshot model multiple times using an algorithm that optimises the transition path
and validates the system’s operability. The second approach aims to extend a snapshot model
to represent the entire transition pathway. However, they excluded this option due to the lack
of models that met the requirements of being fast enough and easily adaptable. Therefore,
they developed a new model based on the first methodology, named EPLANoptTP. It uses a
multi-objective evolutionary algorithm to optimise the EnergyPLAN model [17]. To manage
computational time, the number of decision variables is limited to three: photovoltaic (PV),
wind turbine and battery capacities. Thus, the model does not investigate all the options (i.e.
criteria (iii)).

This paper presents EnergyScope Pathway, an extension of the open-source and documented
EnergyScope TD model [19] listed in Table 1. The latter has an horizon time of one year and
does not account for the pathway from an existing energy system to a long-term target. The
pathway version extends the time horizon to decades and accounts for the pathway transition
from an existing energy system to a long term target. The computational time is kept low
(i.e. around a 15 minutes on a personal laptop). In the spirit of the EnergyScope project, the
code is fully open-source (under the License Apache 2.0, see repo [43]) with a collaborative
documentation [44].

The new model is applied to the case of Belgium, a densely populated country with a
limited amount of renewable energies, which represents roughly one third of the forecasted
energy demand [45]. This makes it a challenging case to go from a highly fossil-dominated
system in 2020 to carbon-neutrality by 2050.

Compared to existing models, EnergyScope Pathway introduces a rapid computational op-
timization tool for exploring diverse transition pathways within an entire energy system while
maintaining high temporal precision to accurately capture the integration of intermittent re-
newables. To the best of our knowledge, there are potential frameworks that could be extended
to similar capabilities, but their computational time for similar case study haven’t been find.
Furthermore, this paper introduces a linear formulation for extending a snapshot model into a
pathway model, while also providing insights into the modeling choices made during method-
ological development. As such, we aim to contribute to the research community by offering an
open-source and well-documented model, along with innovative linear methods for representing
investment decisions throughout the transition process.

The paper is structured as follows: in the methodology, EnergyScope TD is briefly presented
and then extended into the pathway version (Section 2); then, the case study is presented
including the different demands, resources and technologies over the transition (Section 3).
Finally, the results section illustrates typical results obtained with the model and compares
them with other studies for the energy transition pathway of Belgium (Section 4). Through
the paper, a special attention will be kept on the computational time. Two methods will be
presented and assessed to reduce the computational burden: a sequential representation of the
transition (myopic approach) and a coarser time resolution (monthly).

2 Methodology

EnergyScope TD is a linear programming problem. Extending it to a pathway model while
keeping the linear formulation represents several challenges which are (i) the transfer of the
energy system design from one year to another, (ii) taking into account society’s inertia to
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change, (iii) accounting for the cost of the transition pathway and the emissions.
The methodology section is structured as follows: first, the snapshot model is introduced.

Then, the pathway formulation is presented.

2.1 The starting point: a scenario analysis model

2.1.1 Overview of the snapshot model

EnergyScope TD [19] is a model that optimises both the investment and operating strategy
of a ’whole’-energy system, encompassing electricity, heating, mobility, and non-energy sectors.
According to Contino et al. [46], a model qualifies as a ’whole-energy’ system when it considers
all energy sectors, including the non-energy demand such as the production of plastics and other
materials using feedstocks that are also considered as energy carriers, with the same level of
detail.

The model’s hourly resolution over a year makes it well-suited for integrating intermittent
renewables. Its formulation incorporates typical days and a reconstruction method that captures
different time scales from the hour to the season while accounting for the inter-weeks patterns
of wind. This approach minimally affects the design while significantly reducing computational
time [47]. The model investigates all the possibilities by optimising the investment decisions and
hourly operations over a year, with a computational time of less than a minute on a personal
laptop. This characteristic was intentionally incorporated into the model design to facilitate
uncertainty quantification and other studies that require numerous iterations [48].

EnergyScope TD has been successfully applied to various national energy systems, including
Switzerland [19, 49], Belgium [45], Italy [50], and other European countries [51]. Furthermore,
it has been extended to a multi-region energy system model [47], coupled with other energy
models [52], or employed to focus on specific sectors such as the power networks of electricity,
gas, and hydrogen [53].

2.1.2 Formulation of the snapshot model

The conceptual structure of the model is illustrated in Figure 2: given the end-use energy
demand, the efficiency and cost of energy conversion technologies, the availability and cost of
energy resources, the model identifies the optimal investment and hourly operation strategies
to meet the demand and minimise the total annual cost or greenhouse gas emissions of the
energy system. Typically, the two objectives are integrated by placing a limit on emissions
while simultaneously striving to minimize costs.

5/10

Energy strategyParameters
Resources

Technologies

Demand

• Cost
• Emissions
• Primary energy mix
• Design (& operation):

Minimise:

Subject to:
• hourly mass & energy balance
• storage
• limited emissions (𝑔𝑤𝑝௟௜௠௜௧)

• Total system cost or GWP:

Optimisation

Figure 2: EnergyScope TD model is a flow model with inputs (Parameters), an optimising model (Op-
timisation) and results (Energy strategy). The image illustrates what is included (non-exhaustively).
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2.1.3 Linear formulation

The following section illustrates, non-exhaustively, the original EnergyScope TD model. The
objective function, cost and GHG formulation will be detailed. The rest of the formulation
is detailed and available in previous works [54]. This paper uses the following nomenclature:
SETs are in capital letters, Variables are in bold and with first letter capital, and parameters
are in italic. The formulation results from several developers choices detailed in Appendix B.

min Ctot =
∑

j∈TECH

(
τ(j)Cinv(j) +Cmaint(j)

)
+
∑

i∈RES

Cop(i) (1)

s.t. τ(j) =
irate(irate + 1)lifetime(j)

(irate + 1)lifetime(j) − 1
∀j ∈ TECH (2)

Cinv(j) = cinv (j)F(j) ∀j ∈ TECH (3)

Cmaint(j) = cmaint(j)F(j) ∀j ∈ TECH (4)

Cop(i) =
∑
t∈T

cop(i)Ft(i, t)top(t) ∀i ∈ RES (5)

The objective, Eq. (1), is the minimisation of the total annual cost of the energy system
(Ctot), defined as the sum of the annualised investment cost of the technologies (τ ·Cinv), the
operating and maintenance costs of the technologies (Cmaint) and the operating cost of the
resources (Cop). The annualised factor τ is computed a priori based on the interest rate
(irate) and the technology lifetime, (lifetime), Eq. (2). The total investment cost (Cinv) of each
technology results from the multiplication of its specific investment cost (cinv) and its installed
capacity (F), see Eq. (3). The installed capacity is defined with respect to the main end-uses
output type, such as electricity for PV or heat for a boiler. The total operation and maintenance
costs are calculated in the same way, Eq. (4). The total cost of the resources is calculated as
the sum of the end-use over different periods multiplied by the period duration (top) and the
specific cost of the resources (cop), Eq. (5). To simplify the reading, we write the sum over
typical days as t ∈ T such as in Eq. (5) and following equations. The period T represents the
sequence of hours and typical days over a year (8760h)2. The full formulation is detailed in [19]
or in the documentation [44].

GWPtot =
∑

i∈RES

GWPop(i) (6)

GWPop(i) =
∑
t∈T

gwpop(i)Ft(i, t)top(t) ∀i ∈ RES (7)

The global annual GHG emissions are calculated using a life cycle assessment (LCA) ap-
proach, i.e. taking into account emissions of the resources ‘from cradle to use’. It is based
on the indicator ‘GWP100a-IPCC2013´ developed by the intergovernmental panel for climate
change (IPCC) [55]. For climate change, the natural choice as indicator is the global warming
potential, expressed in ktCO2-eq./year. In Eq. (6), the total yearly emissions of the system
(GWPtot) are defined as the emissions related to resources (GWPop). The total emissions of
the resources are the emissions associated to fuels (from cradle to combustion) and imports of
electricity (gwpop) multiplied by the period duration (top), Eq. (7). Thus, this version accounts
only for operation without accounting for the global warming potential (GWP) emitted during
the construction of the technologies. This makes the results comparable with metrics used in
the reports by the European Commission and the International Energy Agency (IEA).

2The exception is storage level which is optimised over the 365 days of the year instead of typical days.
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The above equations (Eqs. (1) - (7)) represent only a part of the formulation and illus-
trate the syntax that is used. Those representing the energy balance, network implementation,
sectors representation... are not presented in this paper but are detailed in the latest ver-
sion of the model, see [54] and on the documentation [56]. Energy storage has two dimension
to be optimised: the stored energy quantity (also referred to as ’storage level’) and the hourly
power flow, encompassing both charging and discharging. EnergyScope TD optimises the hourly
charge and discharge operations based on the hourly resolution of the typical days. In contrast,
the optimisation of stored energy is conducted over the entire span of 8 760 hours in a year.
This formulation allows for the effective integration of a wide range of energy storage technolo-
gies, spanning short-term solutions like small thermal storage units and daily-use batteries, to
longer-term options such as hydro-dam storage for seasonal storage, and even large-scale ther-
mal storage for intra-week patterns. A previous study delved into the roles of various storage
technologies, considering their sectoral applications and temporal aspects, within the context
of the Swiss energy system [49].

2.2 Extending the model for pathway optimisation

In this section, we delve into the expansion of EnergyScope TD from a static yearly snapshot
model to a comprehensive pathway model. While snapshot models provide insights into the
energy system for individual years, they lack the capacity to capture the dynamics inherent in
investment strategies throughout a transition period. Our proposed approach involves segment-
ing the transition into five-year intervals, during which the energy system is optimized for one
specific year. This approach results in seven instances of EnergyScope TD – called representa-
tive years – spanning the 30-year transition period, covering the years from 2020 to 2050. To
bridge these representative year, we introduce additional constraints that capture the invest-
ments changes between consecutive periods, accounting for societal inertia and evaluating both
the cost implications and emissions of the transition. Overall, these constraints are integrated
into a linear framework, ensuring computational efficiency, with an approximate computational
time of 14 minutes on a personal laptop (2.4 GHz Intel Core i5 quad-core).

Figure 3 illustrates the pathway concept. Simplification and choices were necessary to
implement linearly the problem while keeping a tractable computational time. In this section,
we present the formulation retained. This formulation results from choices made by the authors
detailed in Appendix B, such as the one listed hereafter or the implementation of the efficiency
during the transition. Appendix A listes the additional SETS, Variables and parameters used
for the model.

Figure 3: The pathway methodology relies on 7 representative years (blue boxes) where the model
EnergyScope Typical Days (EnergyScope TD) is applied. Moreover, the formulation accounts for linking
constraints (black boxes) and an initial condition (grey box). The overall problem is the pathway model.
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The proposed formulation relies on representative years, selected every 5 years from 2020 to
2050. The period between two of them is called ‘PHASE´. For each of these 7 representative
years, the EnergyScope TD model is run using the relevant data (such as energy demand,
technology costs or GHG emissions constraints).

As a consequence, a new dimension ‘year ’ is added to all Variables and parameters, except
the interest rate (irate) assumed constant during the transition. This new dimension is necessary
to represent the changes of technology and resource characteristics over the representative years.
As an example, the investment cost (cinv ) of a solar photovoltaic panels could drastically vary
in the next decades (e.g. data used ranges between 1220 to 870 [€2015/kW] between 2020 and
2035).

2.2.1 Linking years

At this stage, all years are independent. In the following, we introduce new constraints to link
representative years. The formulation allows to install new capacity (Fnew), remove a capacity
that has reached its lifespan (Fold) or decommission a technology prematurely (Fdecom). These
capacity changes occur during a phase, this implies that there is no capacity change during a
representative year. Figure 4 illustrates the concept. This formulation results from choices
made by the authors detailed in Appendix B.2.

Figure 4: Example of how the technologies capacity and associated variables are evolving. The exam-
ple uses a technology with a 20 years lifetime. Initially 1 GW of capacity exists (Fnew during phase
2015 2020). Then another 1 GW is deployed (Fnew during phase 2020 2025). 15 years later, a part of the
capacity reaches its lifetime limit and is removed (Fold phase 2035 2040). Moreover, during the latter
phase, additional capacity is decommissioned prematurely (Fdecom). Finally, the technology reaches its
expected lifetime and is fully withdrawn (Fold).

F(ystop, i) = F(ystart, i) + Fnew(p, i)− Fold(p, i)−
∑

p2∈PHASE∪{2015 2020}

Fdecom(p, p2, i)

∀p ∈ PHASE , ystop ∈ Y STOP(p), ystart ∈ Y START(p), i ∈ TECH (8)

Similarly to a mass balance, Eq. (8) is the technology capacity balance. The constraint forces
the installation or withdrawing of capacities between two representative years: at the end of the
phase (ystop), the available capacity is the one used in the next representative year (F(ystop)).
This capacity is equal to the one available in the previous representative year (F(ystart)) plus
the new installed capacity (Fnew) minus the capacity that has reached its lifetime (Fold) minus
the early decommissioned capacity (Fdecom). One notices that the capacity available for each
representative year depends on a year (ystart or ystop), while the other capacity changes depend
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on a phase (p or p2). Moreover, the decommissioning term depends on another phase, which is
the one when the technology decommissioned has been built. As an illustration, Figure 4 gives
an example where 0.5 GW of a capacity built in 2015 2020 is decommissioned in 2030 2035
(Fdecom(2030 2035,2015 2020,i)).

Fdecom(p, p2, i) = 0

∀i ∈ TECH, p ∈ PHASE, p2 ∈ PHASE ∪ {2015 2020}|decomallowed(p, p2) = 0 (9)

Fold(p, i) = if(age = ‘STILL IN USE′) then 0

else

Fnew(age, i)−
∑

p2∈PHASE

Fdecom(p2, age, i)


∀p ∈ PHASE, ∀j ∈ TECH|age ∈ AGE(p, j) (10)

In linear programming, a solution might be mathematically correct, while not making sense
in practice. As an example, a technology could be decommissioned before being built (p < pbuilt).
Eqs. (9-10) allow to prevent these non-sense while keeping the formulation linear. Eq. (9) forces
the decommissioned capacity to zero when technology will be built after. To do so, a parameter
(decomallowed) is defined a priori and is equal to 0 or 1 when decommissioning is not possible
or possible, respectively. Eq. (10) defines the capacity reaching its lifetime limit at a certain
phase, the concept is illustrated in Figure 4. For each phase, a set (AGE ) is calculated a priori.
It relates, for a given phase and technology, when the technology should have been built. In the
case the technology has already reached its lifetime limit, the set (AGE ) returns the phase when
the technology has been built. The first part of Eq. (10) indicates that the technology is still
available, and thus no capacity needs to be removed. The second part of the equation represents
the capacity that reached its expected lifetime minus a part of the capacity that would have been
decommissioned. As an example, Figure 4 shows a 20 years lifetime technology with 1 GW of
capacity installed before 2020. Ones will highlight the use of a ‘if’ in Eq. (10), this formulation
is linear as the if is applied to a parameter and not a variable.

Fnew(2015 2020, i) = F(YEAR 2020, i) ∀i ∈ TECH (11)

To initialise the problem in 2020 with the existing design, an additional phase ‘2015 2020 ’
is created. Eq. (11) requires that the capacity used in 2020 is installed in the previous phase
(the choice of this initialisation is motivated in Appendix B.1).

2.2.2 Society inertia

To avoid unrealistically fast changes in the system, additional constraints are needed during the
phases for the mobility and low temperature heat sectors. Without the following constraints,
the model would eliminate certain technologies in one phase, such as oil and gas decentralised
boilers. Even if this result is mathematically and physically correct, (i.e. fuels are expensive and
investing in more efficient technology is economically and environmentally more profitable), this
swap of technology cannot occur in one phase (i.e. 5 years). Indeed, society inertia to change,
available manpower, supply chains and manufacturers limit the change.

∆change(p, i) ≥
∑
t∈T

(Ft(ystart, i, t))−
∑
t∈T

(Ft(ystop, i, t))

∀j ∈ TECH, p ∈ PHASE, ystart ∈ Y START(p), ystop ∈ Y STOP(p) (12)
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∑
i∈TECH(HeatLowT )

∆change(p, i) ≤ limLT,ren ·
(
eui(ystart, HotWater) + eui(ystart, SpaceHeat)

)
∀p ∈ PHASE, ystart ∈ Y START(p) (13)∑

i∈TECH(MobPass)

∆change(p, i) ≤ limMobPass · eui(ystart,MobPass))

∀p ∈ PHASE, ystart ∈ Y START(p) (14)∑
i∈TECH(MobFreight)

∆change(p, i) ≤ limMobFreight · eui(ystart,MobFreight)

∀p ∈ PHASE, ystart ∈ Y START(p) (15)

Eq. (12) calculates the upper limit of change (∆change) in terms of supplied demand instead
of installed capacity. Based on this quantification, the amount of change per phase is limited
for low temperature heat (limLT,ren), Eq. (13), passenger mobility (limMobPass), Eq. (14) and
freight mobility (limMobFreight), Eq. (15). For instance, if the maximum allowable variation in
supplied low temperature heat is set at 25%, it would restrict the technology-related changes
in low temperature heat to 25% within a given phase. Consequently, if a technology supplies
more than 25% of the low temperature heat, it would require multiple phases to replace it with
a different technology.

2.2.3 Cost and emissions of the transition

To optimise the energy system, two key metrics must be adapted: the transition cost and the
total global warming potential (GWP). Concerning the first one, all costs are expressed in €2015

and an annualisation factor is used to distinguish investments over the transition. For the GWP,
the metric used is based on the contributions of the gases over 100 years. It is assumed that
the impact of emitting at the beginning or the end of transition are equivalent and thus no
annualisation is used. This formulation results from choices made by the authors detailed in
Appendix B.4.

min Ctot,trans = Ctot,capex +Ctot,opex (16)

Ctot,capex =
∑

p∈PHASE∪{2015 2020}

Cinv,phase(p)−
∑

i∈TECH

Cinv,return(i) (17)

Ctot,opex = Copex(2020) + tphase · τphase(p) ·
∑

p∈PHASE|ystart∈P START(p),ystop∈P STOP(p)

(
Copex(ystart) +Copex(ystop)

)
/2 (18)

τphase(p) = 1/(1 + irate)
diff 2015 year(p) (19)

The objective function to be minimised is the total transition cost of the energy system
(Ctot,trans), defined as the sum of the total capital expenditure (CAPEX) (Ctot,capex) and
the operational expenditure (OPEX) (Ctot,opex), according to Eq. (16). The total CAPEX
(Ctot,capex) is the sum of the investment during each phase (Cinv,phase), Eq. (17), to which
the residual asset investment cost in 2050 is withdrawn (Cinv,return). Thus, the investments
account for the installation and dismantlement costs of the technologies. The total OPEX
(Ctot,opex) is the sum of the OPEX in 2020 and the annualised sum of the OPEX during each
phase (Copex), Eq. (18). During a phase, the system OPEX is the product of the annualised
phase factor, defined in Eq. (19), and the arithmetic average of OPEX cost for the representative
years before and after the phase. The annualised phase factor is defined based on an average
interest rate during the transition.
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Copex(y) =
∑

i∈TECH

Cmaint(y, i) +
∑

j∈RES

Cop(y, j) ∀y ∈ YEARS (20)

For each year, the yearly OPEX (Copex) is the sum of the operating and maintenance costs
of technologies (Cmaint) and the operating cost of the resources (Cop), Eq. (20).

Cinv,phase(p) =
∑

j∈TECH

Fnew(p, j) · τphase(p) · (cinv(ystart, j) + cinv(ystop, j)) /2

∀p ∈ PHASE|ystart ∈ P START(p), ystop ∈ P STOP(p) (21)

The investment during a phase (Cinv,phase) results from the multiplication of the newly
built technologies (Fnew) with their annualised arithmetic averaged specific cost, Eq. (21). The
annualised phase factor (defined by Eq. (19)) is used. The specific cost during the phase is
defined as the average between the investment cost for the first and last year of the period.

Cinv,return(i) =
∑

p∈PHASE∪{2015 2020}|ystart∈Y START(p),ystop∈Y STOP(p)

τphase(p) · (cinv(ystart, i) + cinv(ystop, i)) /2·

remaining years(i, p)

lifetime(ystart, i)

Fnew(p, i)−
∑

p2∈PHASE

Fdecom(p2, p, i)

 ∀i ∈ TECH

(22)

A part of the investment will remain after 2050. This residual investment, also called salvage
value, can be calculated for each technology. A parameter, calculated a priori , gives for each
technology and construction phase, the remaining amount of years (remaining years). As an
example, if a PV panel has been built in 2045 and has a 20 years lifetime, the parameter will
equal to 15 years. Thus, the salvage value is a fraction of the investment cost of this technology
when it has been built. This fraction is the ratio between the number of remaining years and
the lifetime of the technology. In the previous example, the residual investment of the PV built
is 75%. Eq. (22) computes, for each technology, the residual value that must be deducted
from the total cost. The residual value reflects the fact that the technology can still be used
after the horizon of the model and is not fully amortised. The residual value is not applied to
technologies that are removed prematurely. This differ from other models, such as Plexos where
a technology removed prematurely will benefit from its salvage value (see analysis of [30]).

GWPtot,trans = GWPtot(2020) + tphase
∑

p∈PHASE|ystart∈Y START(p),ystop∈Y STOP(p)

/2 (GWPtot(ystart) +GWPtot(ystop)) (23)

GWPtot,trans ≤ gwplim,trans (24)

The total global warming potential (GWP) emissions during the transition (GWPtot,trans)
are equal to the sum of the total emissions per period (GWPtot), Eq. (23). The emissions
during a phase is estimated as the arithmetic average of the representative years before and
after the phase. Eq. (24) limits the total GWP emissions during the transition by a maximum
(gwplim,trans).

2.3 How to keep a short computational time?

The genesis of the EnergyScope model is the motivation for a short computational time to assess
several scenarios and perform uncertainty analyses [57, 58]. The proposed pathway formulation
implies a problem size increased by a factor of 7 (i.e. the number of representative years between
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2020 and 2050) and a computational time increased by ∼ 72 (typical for linear programming
(LP) problems). Thus, performing thousands of runs, sometimes necessary for uncertainty
quantification [48, 58], becomes a challenge.

In the following, we propose two methods to reduce the computational overhead. Their
performances will be compared in Section 4.2 and put in perspective with the literature. The
first method relies on a myopic formulation of the pathway. Instead of optimising at once all the
pathway, which implies to have a perfect foresight ; the myopic version sequentially optimises
smaller time windows, in a rolling horizon approach. The second method relies on a coarser
resolution of the time: using the monthly resolution instead of the hourly resolution with typical
days. This method was originally used by EnergyScope for the case of Switzerland [57]. The
implementation of these two approaches are detailed in the following paragraphs.

2.3.1 Myopic resolution

Compared to the perfect foresight, the myopic approach has two main advantages: shorter com-
putational time and more realistic representation of the short-sightedness of decision-makers.
For this reason, several studies are based on this approach [59–62]. Babrowski et al. [59] anal-
ysed the benefit of the myopic approach to reduce the computational time. Poncelet et al. [60]
uses this approach to analyse the expansion planning of the power sector beyond 2050. Nerini,
Keppo, and Strachan [61] analysed the impact of the horizon windows and overlapping time.
Overall these studies decided to choose the myopic approach to analyse the speed of change
compared to a perfect foresight approach. Moreover, the myopic approach allows a sequential
optimisation process that opens the doors to decision-making/policy-learning methodologies,
like assessing shock events. This approach is used by Heuberger et al. [62] who assessed the
speed of integration of technologies due to these events. In their analysis of the overcapacity in
European power systems, Moret et al. [63] emphasised that such a “possibility of recourse” is
very appropriate to address uncertainty gradually unfolding over time. This approach is also
taken by Rixhon [64] in a reinforcement learning framework.

Figure 5: The myopic approach (in pink) uses several instances of the pathway model (illustrated in
Figure 3). In this example, the pathway instance has a time horizon of 10 years with a 5 year-overlap.
As a comparison the Perfect foresight (in blue) has a time horizon of 30 years.

After optimising, in design and operation, one time window (e.g. from 2020 to 2030), the
intermediate system design (i.e. the installed capacities) is set as initial conditions for the start
of the next time window (e.g. from 2025 to 2035) as well as the historical investment decisions
(i.e. Fnew, Fold and Fdecom). Consequently, the solution obtained at the end of the first time
window (e.g. 2030) as well as potential investment decisions between the start of the second
time window and this end-year are discarded. In other words, they are not taken into account
for the optimisation of the second time window. This process goes on until the stated end of
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the transition (i.e. 2050, in this case).

2.3.2 Monthly time resolution

Originally developed by Moret [57] for the Swiss energy system, the monthly time resolution
approach consists in averaging the different time series (e.g. solar and wind capacity factors,
varying electricity and heat demands) expressed over the 8760 hours of the year into one value
per month. Besides the time resolution itself, the main difference with the typical days/hourly
method is the absence of technologies for short-term storage (e.g. lithium batteries, thermal
storage in the decentralised heating sector) and constraints related to them.

3 Case study: the Belgian energy system

The proposed formulation can be applied to any regional energy system. In this work, we
apply the model to the Belgian case study as data have been collected in previous works [2, 45,
54]. A weakness of the proposed formulation is its one cell spatial resolution. Belgium has a
similar weather over the country, the energy networks - mainly gas, oil and electricity - are well
deployed and thus using a single cell assumption is reasonable. Belgium is a densely populated
country with a limited renewable potential. The Belgian energy mix in 2020 relied on 89.4% of
non-renewable resources [65], thus the transition pathway is challenging. Moreover, the Belgian
case can represent - to some extent - other industrialised countries highly dependent on fossil
fuels.

In this particular case study, a total of 6 demands have been taken into account (refer to
Section 3.1), along with 23 resources (see Section 3.2), and 112 technologies (see Section 3.3). In
the subsequent analysis, we concentrate on the technologies that have demonstrated significant
influence during the transition. For a comprehensive understanding and detailed descriptions
of the technologies, please refer to the documentation [44].

3.1 Demands

Demands are characterised by yearly quantities to satisfy (e.g. TWh/y) and hourly time series.
The yearly end-use demand (EUD) for all sectors are calculated from the forecast carried out
by the European Commission for Belgium (see Appendix 2 in report [66]). An exception to
this concerns the non-energy demand since the latter report forecast an unsubstantiated +80%
increase compared to the previous edition published in 2016 [67], between 2020 and 2030.
Consequently, the values for the non-energy demands come from [67]. Between 2020 and 2050,
the commission estimates a linear demand growth of electricity, mobility passenger and freight
demands, and non-energy demand. The only exceptions are high and low temperature heats
which have a reduction of 3.3% and 10.2%, respectively. Figure 6 illustrates the end-use demand
(EUD) implemented. For the time series, they are used to assess the operability of the system by
optimising the hourly dispatch over the typical days. These time series are based on historical
values of 2015 for electricity and space heating. A daily time series is used for the passenger
mobility. The other time series are assumed constant over the year.

The demands can be regrouped in four energy types: electricity, heat, mobility and non-
energy. Heat is split in three different sectors: high temperature heat (or industrial heat)
for processes, low temperature heat that can be supplied by a centralised system (i.e. DHN)
and low-temperature heat that must be produced in a decentralised way. Mobility is split in
three types: freight, public passenger and private passenger. The non-energy demand is usually
omitted in simulations despite being 10% of the energy consumption worldwide [68]. In the
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Figure 6: The six types of yearly end-use demands can be regrouped into two categories. The ones
that can be expressed in energy (TWh) and the ones that are expressed in mobility (kilometers). The
non-energy demand is expressed in tons of feedstocks translated into TWh based on the methodology
proposed by [2].

case of Belgium, this sector represents 20% of the energy consumption. Examples are chemicals
(e.g. plastics, fertilisers...) or raw materials (e.g. bitumen). Based on the work of Rixhon et al.
[2], this sector has been implemented in this study by accounting for three demands: methanol,
ammonia and high value chemicals (HVC). These three products cover 90% of the total non-
energy demand worldwide [68] and 91.6% in Belgium in 2015 [69]. HVC “gathers light olefins
(e.g. ethylene, propylene) and aromatics (i.e. benzene, toluene, and xylene (BTX)), mainly used
in the production of plastics, synthetic fibers, or rubber”. Methanol “is mainly converted to
formaldehyde (i.e. resin), but is also used for the production of other chemicals” and ammonia
“is mainly used for the production of fertilizers, which cover more than 80% of its use.” [2].

3.2 Resources

Resources can be regrouped into two categories: endogenous and exogenous. In the case of
Belgium, endogenous resources are mostly renewable: solar, biomass, wind and hydro. The
only endogenous resource which is non renewable is waste. The renewable potential is limited
by the availability of lands, either limiting the energy available (in TWh/y), such as biomass;
or the technology deployment (in GW), such as solar, wind and water based technologies3. In a
previous work [45], the potentials have been reviewed and estimated to 60 GW of Photovoltaic
(equivalent to 61.7 TWh/y), 10 GW of Wind onshore (equivalent to 21.3 TWh), 0.38 GW of
hydro run-of-river (equivalent to 1.6 TWh), 23.4 TWh/y of biomass, 38.9 TWh/y of digestable
biomass. The offshore wind potential has been revised due to additional concession in the sea.
The potential is now estimated to 6 GW (equivalent to 21.6 TWh). The overall renewable
potential is equivalent to ≈170 TWh/y available plus 17.8 TWh/y of non-renewable waste.

Exogeneous resources account for fossil fuels, which are prevailing today’s energy system.
Additionally exogeneous resources account for electrofuels, which rely on renewable electricity as
defined in [70], are also permitted. Furthermore, the importation of electricity from neighboring
countries is allowed, subject to an additional constraint that accounts for grid interconnection
and simultaneity factors. The latter factor represents the maximum capacity for importing
electricity from all neighboring countries. The Belgian transmission system operator (TSO)

3Regarding the latter, it should be noted that the upper bound will be constrained by the technology capacity
rather than the availability of resources.
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has historically reported this factor to be approximately 66% [71]. According to the TSO [72],
the interconnection capacity is expected to gradually increase to 18.1 GW by 2050, with a
simultaneous capacity of 11.9 GW. The latter value is implemented.

Resources are characterised by a price [€/TWh], an availability [TWh/y] and a GHG inten-
sity [ktCO2,eq/TWh]; the latter based on a LCA (see details in the documentation [44]). Avail-
ability and GHG intensity are constant over the transition except for electricity imported. The
value of the imported electricity GHG in 2020 is derived from the European mix (413.0kgCO2-
eq/MWh), while the value in 2050 is 0. In between, the GHG intensity is interpolated linearly.
The resources prices are summarised for the different years in Table 2, data are based on [73]
forecast for fossil fuels and electricity; while [74] estimates the costs for electrofuels. The elec-
tricity import availability is limited to 30% of Belgium electricity EUD to limit dependency
from neighbouring countries. This arbitrary availability is three times greater than historical
values in the last two decades [75].

Table 2: Fuel prices (€2015/MWh) in years 2020 and 2050 for different resources. Except for biomass,
all resources are imported. Upper part of the Table shows fossil resources and their equivalent renewable
substitutes. Lower part of the Table shows the remaining resources. The prices are assumed to change
linearly during the period 2015-2050. Abbreviations: light fuel oil (LFO).

Non-renewable (€2015/MWh) Renewable (€2015/MWh)
Year 2020 2050 2020 2050

Gasoline 66 94 Bio-gasoline 123 100
Diesel 63 91 Bio-diesel 131 109
LFO 48 69 -
Fossil gas 34 53 e-methane 132 104
Ammonia 72 114 e-ammonia 93 71
Methanol 81 116 e-methanol 123 100
Hydrogen 78 96 e-hydrogen 138 101

Coal 16 18 Woody biomass 30 36
Waste 21 25 Wet biomass 5 6
Uranium 4 4 -

Imported electricitya 57 105

aIt is assumed that carbon footprint of the imported electricity decreases from the European mix historical
value in 2015 (413 kgCO2,eq/MWh) until net zero by 2050. Price is based on historical values and increased by
a factor 1.36 until 2035.

3.3 Technologies

Technologies are characterised by an investment cost [M€/GW], an operating cost [M€/y/GW,
a conversion efficiency (if applicable), a GHG emission for the construction [ktCO2,eq/GW],
a lifetime [years], a maximum capacity factor (if applicable) and a minimum and maximum
deployment [GW]. The previous units were expressed for power supply technology (in GW).
This unit changes to GWh for storage technologies, Mpkm/h for passenger technologies and
Mtkm/h for freight technologies.

The technologies account for three sub-groups: conversion technologies, storage technologies
and infrastructures. Conversion technologies are characterised by conversion efficiencies as it
converts resources into other energy carriers, such as a PV panel that converts solar irradiance
into electricity, or a gasoline car that converts gasoline into kilometer passenger or even a syn-
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thetic methanolation plant converting captured CO2, hydrogen and electricity into methanol
and low-temperature heat. Storage technologies are characterised by charging/discharging effi-
ciencies [%], internal losses [%/h] and an energy-to-power ratio [h]. Infrastructures encompass
the electrical and DHN grids. They are characterised by a size, an investment cost and a life-
time. For the power grid, the size is proportional to the deployment of intermittent renewable
(367.8 M€/GW, see [54] for details). For the DHN, the size is proportional to the DHN heat
production capacity and is estimated at 825M€/GWth.

The investment and maintenance costs as well as the efficiencies are evolving over the years,
especially for promising technologies such as batteries or electrolysers. These data come from
the Danish energy agency database that regularly updates the techno-economic specifications of
most of the implemented technologies [76–78]. In its previous version (see [54]), the consistency
of the data for the electricity and mobility sectors have been verified with a literature review
of two metrics: levelised cost of energy (LCOE) and the total cost of ownership (TCO). Since
then, the forecast for vehicles prices have been revised based on more recent literature [66, 79].
The resulting updates are more efficient battery electric vehicle (BEV) and more expensive fuel
cell (FC) cars, that make the former more competitive.

3.4 Society inertia and political framework

The inclusion of additional constraints becomes necessary to prevent excessively rapid changes
in the sectors mentioned below. In the case of the mobility sectors (limMobFreight and limMobPass),
a value of 50% has been selected to represent a transition period of 10 years, which corresponds
to the average lifespan of private cars. For the heating sector (limLT,ren), a value of 33% has
been adopted to signify a transition period of 15 years. These values reflect ambitious targets
and entail significant societal changes. The reasoning behind these choices is to allow for rapid
system transformations without excessively restricting the system. As an illustration, heat
pumps are a promising technology to decarbonise the heat sectors but its supply chain is not
yet on track to meet its massive penetration [80].

The green deal, a legislation from the European Union is directing Belgium to reach carbon
neutrality by 2050 [81]. This directive is translated into a upper bound for the yearly GHG for
the system and for each representative year. The bound is set arbitrary as a linear decrease
from 2020 value to 0 in 2050. Implementing the GHG target into yearly constraints is necessary
for the myopic approach. Indeed, it doesn’t optimise the full transition at once and needs
a constrain. An alternative formulation, not comatible for the myopic, is to define a carbon
budget as stated in Equation 24. A study with this formulation is available in a previous work
[54].

All the numerical value and details of the sources and pre-processing have been detailed in
[54] and are updated in the collaborative documentation [44].

3.5 Hourly time series

The models necessitate hourly time series to allocate annual demands or potential into hour-by-
hour profiles. Two key characteristics of these time series are of paramount importance: their
hourly amplitudes and their hourly correlations with other time-related data sets. For instance,
an anti-correlation exists between heat demand (mostly in winter) and solar energy (mostly in
summer). Accounting for these two parameters are key to ensure a consistent hourly profiles.

To maintain the correlations among these time series, historical data spanning the year 2015
have been used to create dimensionless time series. These time series can be categorised into
two groups: demand and technology. Within the demand category, we have implemented hourly
profiles for electricity demand, space heating demand, and passenger mobility demand. For the
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latter, we used a daily profile repeated throughout the year without distinction between week-
days, weekend-days and holidays. The other demand, which are domestic hot water, industrial
heating, freight mobility, and non-energy demand per feedstocks, the demand was assumed
constant over time.

Some technologies weather dependent uses a time series to constraint their production.
This formulation comes on top of a yearly capacity factors. These technologies include solar
photovoltaic, solar thermal, hydro-dams, hydro-rivers, onshore wind turbines, and offshore wind
turbines. Belgium’s renewable energy production predominantly relies on solar PV, onshore,
and offshore wind turbines. The time series for these technologies are derived from historical
production data available from the TSO. For thermal solar, historical irradiance data for 2015
were used. For hydro rivers, it plays an almost negligeable role in the Belgian electricity mix
and thus we used swiss data. Detailed hourly time series data are accessible in the data section
of the documentation [56] for further reference and analysis.

4 Results

The following sections show the results of the model applied to the case study. In the first
section, the perfect foresight model is applied and typical results are illustrated. In the second
section, a comparison is performed between the perfect foresight, the myopic and the monthly
versions.

4.1 Belgian energy transition pathway

In the following, we first perform a technical investigation of the pathway by checking the
greenhouse gas breakdown by energy sectors and then the primary energy mix is analysed. To
illustrate the sector coupling, a focus is made on the electrification of other sectors. Then, the
cost implications in terms of investments and operations are discussed.

4.1.1 Greenhouse gases and primary energy

Figure 7 shows the greenhouse gas (GHG) per sector. As a reminder, the total GHG is capped
linearly between its historical value in 2020 (121 MtCO2,eq) and 0 in 2050. This approach is
necessary for the myopic approach, while other approaches, such as imposing a carbon budget
over the transition or an end goal (carbon neutrality in 2050) would be more realistic4. The
system reaches its upper bound (i.e. maximum emissions) every year.

The defossilisation5 of the different sectors are not performed at the same rate. The non-
energy demand of methanol and ammonia are substituted by electrofuels. These are the first
use of electrofuels as e-ammonia is the cheapest electrofuel thanks to the high maturity of the
haber-bosch process. The decentralised heat and mobility sectors are also dropping first. This
is a combination of efficiency and substitution of fossil fuels with electricity. Efficiency comes
mainly from district heating networks and electrical heat pumps for the heat sector, and public

4The carbon budget has been implemented for the perfect foresight in a previous work [54]. In this work,
Figure 7.14 shows a Pareto Carbon-budget - transition cost. The study shows that no transition would be 7% less
expensive but emitting 75% more GHG while not achieving carbon neutrality. Moreover, reducing the carbon
budget by a little amount could have a small impact on the cost down to a certain amount. As an example,
reducing the carbon budget by 13% will imply an extra cost of 1.3%.

5In a more sustainable future, some of the energy carriers, currently produced mostly from fossil resources, will
still consist of hydrocarbons (e.g. e-methane or e-methanol). This is why this paper rather uses “defossilisation”
rather than “decarbonisation” as carbon will still play a key role in a carbon-neutral energy transition [82].
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Figure 7: Energy sectors have different speed to reduce GHG emissions over the transition. The system
uses all the allowed GHG prescribed by the linear decrease from the emissions in 2020 until carbon-
neutrality in 2050.

mobility and electric cars for the mobility sector. From 2040 onward, the decreases are mainly
due to the substitution of the remaining fossil fuels by electrofuels as illustrated in Figure 8.

Figure 8 shows the primary energy mix for the different representative years. The pathway
verifies five trends: (i) reduction of primary energy thanks to energy efficiency; (ii) massive
integration of endogenous renewable energies; (iii) importance of electrification; (iv) the usage
of gas as the last fossil resource; and (v) the obligation to rely on renewable fuels to achieve
carbon neutrality.
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Figure 8: Primary energy emitting GHG (below Uranium) are reducing linearly with fossil gas remaining
until 2045. A part of this energy is replaced by renewable ones and starting from 2040, a significant
share of electrofuels. As end-use demands slightly increase (see Figure 6), the drop represents energy
efficiency (i.e. providing the same services with less primary energy). Abbreviations: light fuel oil (LFO)
and e-molecule stands for a renewable molecule with no global warming potential.

The energy supply decreases from 554 TWh/y in 2020 down to 368 TWh/y in 2050 (i.e.

22



-34%) whereas, in the meantime, the demands have increased by 19%, on average. This drop
of primary energy consumption reflects the penetration of efficient measures and technologies,
such as the previously mentioned public mobility, DHN or heat pumps. The results in 2050 are
aligned with other studies, such as Devogelaer et al. [83]6 and My20507 [85] which estimates
respectively a range of 305-417 TWh/y and 307-364 TWh/y for their central scenarios.

The first fossil energy to phase out is gasoline, which is exclusively used for private cars.
Indeed, private mobility is partially replaced by public one8; and the cars are switching from
gasoline and diesel to electricity. Then, diesel and LFO are decreasing. As diesel is used for
trucks and buses mobility, it is harder to phase out compared to gasoline exclusively burned
in cars. The first drop of LFO reflects the switch from oil boilers to other technologies: heat
pumps and gas cogeneration mainly. Then, it is mainly used for the production of HVC, this
reflects that HVC is a feedstock hard to defossilise. Finally, coal is kept mainly for industrial
usage because it is a cheap fossil fuel (mainly for industrial usage). To phase it out beforehand,
a penalty mechanism, such as a carbon tax, would be required, or its strict ban should be put
in place. The last fossil energy present in the system is fossil gas, used for the production of
electricity and heat, through cogeneration mainly. Indeed, gas plays a key role to balance the
intermittency of solar and wind.

The consumption of uranium declines in 2025, dropping to 2 GW, primarily due to the
political framework aimed at phasing out nuclear energy [87]. In the initial stages, significant
deployment of endogenous energies takes place. This includes the utilization of wood, wet
biomass, and wind energy, followed by the introduction of solar energy. However, solar energy
is not fully deployed during this period due to higher integration costs. Starting from 2025, the
importation of electrofuels begins, although their significant utilisation is observed from 2035
onwards. Initially, these fuels are predominantly employed as feedstocks in non-energy sectors.
From 2040, e-methanol is additionally utilised for the production of High-Value Chemicals
(HVCs), e-hydrogen is employed for mobility purposes, and both e-methane and e-ammonia are
used for electricity generation through gas combined heat and power (CHP) and ammonia-based
combined cycle gas turbine (CCGT) plants (see Figure 9).

In 2020, Belgium has been a net-exporter of electricity, however with the shut-down of
nuclear power plants and the increase of electricity consumption, Belgium will become a net
importer of electricity. These imports reach their maximal allowed capacity by 2035 (i.e. 30%
of electricity end use). This strong dependence on imported electricity illustrates the need for
balancing intermittent renewables without relying on fossil fuels.

4.1.2 Electricity sector: Capacities and yearly balance

To better understand the electricity sector, the installed production capacities are given in
Figure 9, while the supply-demand yearly balance is illustrated in Figure 10.

As introduced in the primary energy analysis (see Figure 8), renewable capacities soar. By
2050, wind and solar technologies deployments are 60 GW of PV, 10 GW of onshore wind
turbines and 6 GW of offshore wind turbines. To compensate the intermittency, the system
relies on imported electricity, gas CCGT, sector coupling and storage. As an illustration, in 2050,

6This study was ordered by the National Planning Bureau in 2013. Five scenarios are proposed.
7The Climate Change Service of the Federal Public Service Health launched an initiative in 2012 entitled

‘Low Carbon Belgium by 2050 ’. This initiative resulted in a report and a calculator in 2013 [84]. The Belgian
calculator has been improved since then into a recent expert version called My2050 [85]. From this study, the
results of two scenarios will be used: one based on an optimistic evolution of technologies (Technology), and one
focusing on an increased dependence on neighbouring countries (EU integration).

8Given the major role played by private cars in the Belgian passenger mobility nowadays (i.e. around 80%
[86]), public transport (e.g. tramways, buses and trains) is assumed to be able to supply only half of it.
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Figure 9: The electrical production capacity will experience massive expansion of wind turbines (onshore
and then offshore) and a soaring installed capacity of PV. Ammonia CCGT are installed at the end of
the transition to provide a flexible capacity as gas CCGT are phased out. Abbreviations: combined cycle
gas turbine (CCGT) and photovoltaic (PV).
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Figure 10: The electricity supply (positive values) will remain a mix of different technologies where
backup is first mainly provided by gas-CCGT and then imported electricity, heat and power cogenera-
tion and later ammonia-CCGT. The electricity demand (negative values) is led by the electricity end-use
demand, but the share used to electrify heat (heat pumps), vehicles (cars, trains, trams, ...) and in-
dustrial heaters drastically increase. This enables a flexible demand that can facilitate the integration
of intermittent renewables. Abbreviations: battery electric vehicle (BEV), Combined cycle gas turbine
(CCGT), district heating network (DHN) and photovoltaic (PV).
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176.8 TWh of electricity transit on the grid which includes 32.4 TWh of electricity imported and
15.4 TWh of electricity from CCGTs. This result is aligned with other studies that estimates
different ranges: 180-310 TWh/y [83], 126-140 TWh/y [85] and in a more recent study using the
TIMES-BE model, 185-196 TWh/y [88]. Higher values from Devogelaer et al. [83] illustrate an
almost exclusively electrified energy system. The differences between the study ranges reflect
the different assumptions in term of renewable potential and availability of nuclear energy. A
general trend is that Belgium should maximise its use of endogenous renewable resources, which
Dubois et al. [89] identified as a cheaper option than importing additional renewable energies
from abroad. Demand management reflects the flexible use of electricity, mainly through heat
pumps that uncouple the heat demand and the electricity consumption when combined with
thermal storage. Gas CCGT is also a useful asset to compensate intermittent renewables.
However, its capacity remains the same as the one installed in 2020. These results are verifying
an hourly adequacy of the power demand. Moreover, in a previous study by Pavičević et al. [52],
the snapshot version of the model has been coupled with Dispa-SET, a dispatch optimisation
model. Results showed that the backup capacity was underestimated by less than 20% to
respect reserve capacity, mainly due the lack of reserve capacity for grid stability.

From 2025, the electricity mix has a strong renewable share that rises up to 60% in 2050.
The remaining 40% are mainly gas (or ammonia) in CCGT and cogeneration and imported
electricity. From a demand perspective, the electrification first starts with DHN heat pumps,
then electric cars, then decentralised heat pumps and finally industrial heaters. The latter
reflects the usage of cheap PV production peaks.

4.1.3 Costs: Investments and operation

In the following paragraphs, the results are analysed from an economic perspective to decipher
the choices made by the model, as the overall cost of the transition is 1 004 b€2015 split unequally
among the sectors.

Figure 11 illustrates the cumulative investments made throughout the transition, amounting
to a total of 377.8 b€2015. Initially, the infrastructure, transport, and electricity sectors each
account for approximately one-third of the investments. The investments in infrastructure are
primarily driven by the electricity grid and the district heating network (DHN), representing a
combined investment of 73 b€2015. The electricity sector’s investment is led by power plants,
totaling 31.5 b€. Notably, the investment costs in the mobility sector are primarily attributed
to private cars, constituting 71% of the total. A rough estimation confirms the significant
investment in cars, with an average of 500,000 vehicles registered annually in Belgium over the
last decade [90] and assuming an average cost of 20 k€ per car, the funds allocated to private
cars amount to 10 b€ per year. This trend in private cars explains why the private mobility
sector accounts for half of the investments required to achieve the transition by 2050. This
finding aligns with other studies, such as Devogelaer et al. [83], which estimates cumulative
investment expenditures of approximately 600 b€2005 for the transport sector between 2013
and 2050, which confirms our conservative approach in the estimation.

As a comparison, the investments required to fully deploy the PV and wind potentials from
2020 to 2050 amount to 74.4 b€2015, with an additional 22.2 b€2015 allocated to reinforce the
grid. The electrification of the heating sectors necessitates investments of 29.2 b€2015, includ-
ing 6.5 b€2015 for the deployment of the DHN infrastructure. Storage investments, primarily
focused on DHN seasonal storage, amount to 3.6 b€2015. Apart from the investment required
to replace all private vehicles (accounting for 44% of the overall investments), the remaining
sectors represent a total of 212 b€2015. To mitigate the cost of the transition, My2050 suggests
deploying a fleet of no more than one million vehicles and implementing a car sharing system,
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distinct from car-pooling, as an inevitable measure [85].
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Figure 11: The cumulative investments over the transition is unequally spread between the sectors.
The energy system in 2020 is imposed to the existing energy system and its expenses are split in three
main categories: mobility (mainly vehicles), infrastructure (mainly grids) and electricity (mainly thermal
power plants). The investments required during the transition represents 150% the initial investment
and mainly in the same three sectors. Abbreviation: high value chemicals (HVC).

A part of the investment will be recovered at the end of the transition based on the remaining
lifespan of the technology after 2050. Figure 12 illustrates the salvage value by sectors, calculated
according to Eq. (22). Out of the 114.4 b€2015 of investments, in the infrastructure (i.e. mostly
power grid and gas network), 55.9% remain available after 2050, due to their long lifetime. On
the contrary, private mobility has a lower salvage value due to a major drop within the first
four years and an average lifetime below 10 years [90].

In addition to investment decisions, the operational expenditure (OPEX), which account
for resource utilisation and technology maintenance, are significant. Figure 13 shows the yearly
system cost for each sector except the OPEX related to resources that are grouped together.
The latter dominate the OPEX, with a significant share of non-renewable resources (e.g., 63.6%
in 2020) until 2040, followed by a steep increase in the share of renewable resources (e.g., 66.2%
in 2050). The substantial reliance on non-renewable resources reflects the prevalent use of fossil
fuels in our current energy system. The high cost-share of non-renewable fuels underscores
the economic challenges of simply substituting fossil fuels with renewables, particularly evident
when emphasing that electrofuels are 2-3 times more expensive. Maintenance expenses in the
private mobility sector rank second in terms of expenditure. On the other hand, maintenance
expenses in other sectors are relatively small compared to the aforementioned sectors.

The annualised cost of the energy system in 2015 is estimated to 44.3 b€/y and increases
by 5.5 b€/y to reach 49.8 b€/y by 2050. My2050 estimates the annualised cost in 2050
between 63 and 82 b€/y, while the other studies just indicate the cost increase compared to
2015 (+11.7 to +21) [83, 88]. The differences come from the scope of the energy system, as
an example My2050 also accounts for the agriculture sector. These differences highlight the
difficulty to compare different studies due to difference of scope and partial availability of data
used. Overall, comparing with existing study show the consistency of the results provided by
EnergyScope Pathway.

26



0

13.9

55.9

Respective share of salvage value
[%]

Centralised
heat

Industrial
heat Freight

mobility
Decentralised
heat

Electricity
Private
mobility HVC

Methanol

Public 
mobility Storage

Infrastructures

Figure 12: By the end of the transition (i.e. in 2050), the ratio between the salvage value and its
cumulative investment, per sector, is unequal. Investments in infrastructures, public mobility, storage
and other long-lifetime technologies experience an important salvage value, at the contrary, investments
in private mobility will not be recovered as vehicles have a short lifetime. All together, these salvage
values represent 160.1 b€2015, 25% of the cumulative investment costs in 2050.

4.2 Reducing computational time

The EnergyScope models have the advantage of a concise formulation and short computational
time. By extending it to the transition pathway, the computational cost soars from 34 seconds
to 14 minutes (on a personal laptop). Two methods have been introduced in the methodology
(see Section 2) to reduce the computational time: the myopic approach (MY), and the monthly
resolution (MO).

Where Appendix C presents a more exhaustive comparative analysis between the different
approaches, the current section aims at exploring the main distinctions pointed out in Table 3.

4.2.1 Myopic versus Perfect foresight

As expected, the computational time is reduced by 55% while the design remains similar.
Given the continuous change of the input parameters over the considered time frame, the perfect
foresight and myopic approaches results are very similar, like in [91]: less than 1% cost difference
over the transition, similar system designs by 2050 and slight shifts in time in terms of adoption
of technologies. A more detailed comparison is available in Appendix C.

The main difference lies in the transition itself and especially in the earlier deployment of
PVs and offshore wind turbines. These induce the reinforcement of the grid that is capital-
intensive and long-lifetime asset. This is mostly due to the chosen formulation of the salvage
value. Since the objective function is now the transition cost over a more limited time window
(i.e. 10 years rather than 30 years), a bigger salvage value, deduced from the total investments,
leads to a temporary better optimum at early stages of the transition.

4.2.2 Monthly versus Hourly

As expected, the computational time drops by 99%. The total transition cost is similar (≈2%).
However, the design of the system is different, see Table 3. Beyond the technologies not captured
which are daily storage technologies, intermittent renewables (PVs and wind turbines) are much
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Figure 13: The yearly system cost shows the shift from non-renewable to renewable resources (mainly
electrofuels). Operation cost and maintenance represents almost 50% of the expenses.
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Table 3: Summarised general differences between the three approaches: Perfect foresight with hourly
resolution (PF), Myopic with hourly resolution (MY), and Perfect foresight with monthly resolution
(MO). Differences with the reference case (PF) below 1% are not shown (≃), and ones above 10% are in
bold.

PF MY MO Units

Computational timea 830 373 2 s

Transition cost by 2050 1004 ≃ -2% b€2015

Primary energy mix in 2050
Total 368.0 ≃ +2% TWh/y
e-methane 41.0 +6% +51% TWh/y
e-ammonia 40.7 -10% +55% TWh/y

Electrification in 2050b
Systemc 63.3 ≃ -27% TWhe
Industrial heatd 12.3 -7% -98% TWhth
Decentralised heatd 73.9 ≃ -13% TWhth

Year of full VRES-deployment
PV 2045 2040 2040 -
Wind-offshore 2030 2025 2025 -
Wind-onshore 2025 2025 2025 -

aThese computational times were reached on a 2.4GHz 4-core machine.
bThe electrification of the other sectors (i.e. centralised heat (100%-heat pump), private (100%-BEV), public

mobility (80%-train and tramway), freight mobility (25%-train) and non-energy demand (0%)) are identical
between the three approaches and are, therefore, not presented in the table.

cThe electrification of the system is computed as the difference between the total production of electricity and
the end-use demand of electricity.

dThe electrification of the industrial and decentralised heating sectors is expressed in terms of thermal energy
(TWhth) provided by electrified processes, respectively industrial resistors and decentralised electric heat pumps.
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easier to integrate in the system as the daily supply-demand intermittency and mismatch are
not at stake. This explains why industrial resistors, and decentralised electrical heat pumps to
a smaller extent, are barely installed in the monthly approach whereas they are used to absorb
the renewable electricity produced by PVs during the sunny days, in a carbon-neutral 2050, in
the hourly model.

Consequently, this leaves the industrial and decentralised heating sectors relying more on
conventional technologies, boilers and heat pumps, but running on renewable e-methane. Fi-
nally, to respect the limit on emissions, the model decides to invest earlier (i.e. 2045) in more
CCGT running on e-ammonia, rather than importing electricity from abroad. This explains
the increase of e-ammonia consumption in 2050. A more detailed comparison is available in
Appendix C.

In conclusion, both monthly and myopic alternatives reduce the computational time. Al-
though, the monthly alternative is inaccurate to capture the integration of intermittent renew-
able energies. However, its very short computational time makes it ideal to perform thousands
of runs and can be used to some extends. The myopic appears as an accurate alternative that
might slightly over-invest. Similar trends have been reached in a similar study where GHG
weren’t constrained, see details in Appendix C.3

5 Conclusions

In the urgency to address the climate crisis, the objective to reach carbon-neutrality by 2050
has been clearly set worldwide [92]. However, the ways to get there are numerous [93] and
trigger debates. To feed these discussions and give more insight to decision makers, we have
developed a methodology to optimise the transition pathway of a whole-energy system: En-
ergyScope Pathway. Like its original model, EnergyScope TD [19], this model represents a
whole-energy system, is open-source, is documented, and optimises both the investments and
hourly operations over a year. The code and documentation are available online (see [43] for
the code and [44] for the documentation). On top of these, EnergyScope Pathway assesses
the entire transition by linking representative years over the transition while keeping the lin-
ear programming approach and, consequently, a tractable formulation. Optimising the perfect
foresight 2020-2050 transition takes less than 15 minutes on a personal laptop. This model
accounts for society inertia to change, anticipated decommissioning of assets as well as their
salvage values. The latter avoid penalising capital-intensive investments.

The present work also presents the application to the Belgian energy system. Being a densely
populated country with a limited renewable potential and fossil-dominated primary mix (i.e.
in 2020, 89.4% of it is based on non-renewable resources), Belgium represents a challenging
case study towards carbon-neutrality. The main results highlight a budget of 1 004 b€ over
the transition between 2020 and 2050. This represents roughly twice the actual Belgian annual
GDP and is balanced between investment (i.e. assets-related) and operation (i.e. resources-
related) costs. Investments are driven by the fleet of vehicles to be replaced (44%), while
renewable deployment (20%), electrification of heat (6%), reinforcement of the grid (6%) or
storage technologies (1%) are much lower. To achieve a cost-effective transition, all the options
are used: more efficient technologies reduce by 34% the consumed primary energy between
2020 and 2050, the massive deployment intermittent energies (i.e. sun and wind) allows the
production of 28% of the primary energy mix in 2050 and, eventually, import of expensive
renewable energies: electricity from neighbours (9%) and renewable fuels (41%). To facilitate
the integration of intermittent renewable, electrification and storage technologies are heavily
used.

The model’s consistency was assessed by comparing its results with those of similar studies,
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mainly utilising the TIMES-BE model, a non open-source model. While it can be challenging
to conduct a detailed comparison due to limited accessibility and documentation of information
in models, the key performance indicators such as primary energy, electrification, and annu-
alised total system cost demonstrated consistent outcomes. An extensive comparison with the
Plexos model [94] — a commercial model — showed that EnergyScope Pathway yielded similar
results, but with significantly shorter computational time and modularity Waucquez [30]. Some
differences were observed that were mainly due to the different selection of typical days (TDs)
and difference in the salvage formulation of the objective formulation.

This paper additionally analysed an alternative approach to the perfect foresight: a myopic
foresight. The latter optimises the design on rolling windows with a limited knowledge of
the future. A comparison between both approaches showed small differences with the myopic
approach while reducing the computational time by 55%. Moreover, the myopic approach allows
a more realistic representation of the decision making process, such as revealing shocks over the
transition. This approach will be used in future work to assess the techno-economical robustness
of transition pathway.
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A Tables of SETS, Variables and parameters.

The full list of new SETs, parameters and Variables are defined and summarised in Tables 4,
5 and 6, respectively.

Table 4: New SETs for pathway formulation.

Set Index Description

YEARS y ∈Y Representative years when the
EnergyScope TD model is evaluated

PHASE p ∈P Phase between two consecutive YEARS
PHASE START (p) ⊂ Y Year just before the phase p
PHASE STOP (p) ⊂ Y Year just after the phase p
AGE (tech,p) ⊂ P ∪ Exceptionsa Phase when the technology (tech) has been built

aThe set AGE gives for each technology (tech) at a phase (p) the phase when it has been built. However, the
set PHASE does not cover all the cases. Indeed, if the technology has been built before YEAR 2020, another value
is assigned to the set AGE. Either the technology has been built just the phase before YEAR 2020 (”2015 2020”)
or the technology has been built before (”STILL IN USE”). Section 2.2.1 illustrates the use of this parameter.

Table 5: New parameters for pathway formulation. Set indices as in Table 4

Parameter Units Description

maxinv,phase(p) [€2015] Maximum investment per phase
tphase [y] Phase period (default 5 years)a

diff2015,phase(p) [y] Years difference between financial reference year (2015) and the phaseb.
gwplimit,transition [ktCO2] Maximum carbon dioxyde (CO2)eq emissions during the transition.
decomallowed(p,p,tech) [-] Allow a technology to be decommissionedc

limitLT,renovation [-] Limit the change in low-temperature heat technologies during a phased

limitpass.mob,changes [-] Limit the change in passenger mobility technologies during a phased

limitfreight,changes [-] Limit the change in freight mobility technologies during a phased

efficiency(y) [-] Share of energy efficiency achievement compared to reference (2050).
τphase(p) [-] Annualisation factor for investments during the phases.

aIn this Pathway version, two time scales are mentioned, the one used by the EnergyScope TD model to
evaluate the energy system (top), usually an hour; and the one for the transition between two representative years
(tphase), usually 5 years.

bThis parameter is only used to evaluate the annualisation factor, see Eq. (19).
cIn a phase, when the decommissioning is not allowed (decomallowed = 0), the variable (Fdecom) is forced to

0. See illustrations in Figure 4.
dA 20% value allows 20% of the service provided by the sectors’ technologies to change during a phase. As

an example, for private mobility, this means that over a phase 20% of the passenger mobility provided by one
or more technologies may change; if 35% of the mobility is provided by gasoline car, after one phase it can only
drop down to 15%.

32



Table 6: New Variables for pathway formulation. All Variables are continuous and non-negative,
unless otherwise indicated.

Variable Units Description

Fnew (p’ a,tech) [GW]bc Installed capacity during a phase p’ with respect to the main output
Fdecom(p,p’ a,tech) [GW]bc Decommissionedd capacity built in phase p’ during a phase p with respect to the main output
Fold(p,tech) [GW]bc Retiredd capacity during a phase p with respect to the main output
Cinv,phase(p) [M€/GWe ] Phase total annualised investment cost
Copex(y) [M€/GWe] Operational expenditure over a year
Ctot,opex [M€/GWe] Total operational expenditure over the transition
Ctot,capex [M€/GWe] Total capital expenditure over the transition
Ctot,trans [M€/GWe] Total transition cost
GWPtot,trans [MtCO2] Total transition global warming potential
∆change (p,tech) [GW]bc Change in a technology used during a phase

a p’ ∈ PHASE ∪ {2015 2020}.
b[Mpkm] (millions of passenger-km) for passenger, [Mtkm] (millions of ton-km) for freight mobility end-uses
c[GWh] if tech ∈ STO
dDuring a phase, a technology can be retired (Fold) or decommissioned (Fdecom). The retirement happens

once the technology reaches its expected lifetime limit. Instead, the decommissioning can happen in-between the
construction phase and the retirement.

e[Mpkm] (millions of passenger-km) for passenger, [Mtkm] (millions of ton-km) for freight mobility end-uses,
[GWh] if tech ∈ STO .

B Formulation choices

The proposed formulation is a result of several decisions that the developers have taken. These
decisions reflect either the results of several tests, or a choice among different methods. This
section shares the underlying reasons of these decisions. Moreover, as a key feature of the Ener-
gyScope models is to have a short computational time, we will propose alternative formulations
that will be tested and compared in Section 4.2.

B.1 Horizon initialisation

In reality, the first representative year (i.e. 2020) inherit from a mix of technologies that have
different ages. However, in the proposed formulation (Eq. 11), we assume that all the technolo-
gies are built just before the first representative year. This approximation is wrong but avoid
collecting the age of all the existing technologies. However, the impact of this approximation
is limited. These capacities are fixed exogenously. Thus, they have almost no impact on the
investment decisions and have a limited impact on the overall transition cost in view of the
investments that will be made after.

B.2 Years linkage

Striking a balance between accuracy and complexity has been a challenge in creating a com-
prehensive and linear formulation to connect multiple years. Various formulations have been
explored, and the currently proposed one emerged as the most favorable option. Opting for a
simpler formulation to read, would imply the use of non-linear or integer formulation, which
imply higher computational time. Or it would imply to compromise the accuracy of the model
by, as an example, not specifying the deployment dates of technologies.

One might question the rationale behind the formulation presented in Section 2.2.1, which
distinguishes between technologies decommissioned prematurely and those that have reached
the end of their operational lifetime. This decision introduces two parameters, namely age
and decomallowed . There are two key reasons driving this choice. Firstly, the value of Fold

is constrained by when the technology has been built (Eq. (10)). Consequently, combining
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the two types of technologies would over constrain Eq. (8). Secondly, the model permits the
removal of a technology if it remains unused. This simplifies post-processing tasks, such as
identifying when a technology becomes obsolete, and also aligns with realism by eliminating
maintenance-related costs.

An additional motivation for the proposed formulation arises from the constraints of linear
programming. In this context, it is not possible to create loops for setting values directly
within the language. Therefore, any necessary preprocessing must be conducted in advance.
Parameters are pre-defined and utilized to constrain variables, akin to a for-loop structure. This
rationale justifies the introduction of the decomallowed parameter, which limits decommissioned
capacity to its physically feasible range, as expressed in Eq. (9). Similarly, the AGE set is
employed to impose constraints on the Fold variable, ensuring it remains within its physically
feasible domain, as indicated in Eq. (10).

These choices resulted in four constraints (Eqs. (8)-(10)), one set and one parameter. This
formulation has the following advantages: (i) cost and characteristics of technologies are year
dependent; (ii) linear formulation; (iii) definition of feasible space during pre-processing; and
(iv) distinction between decommissioned and end of life technologies. The disadvantages are:
(i) pre-processing of parameters and set; and (ii) the efficiencies of technology depend on the
year when they are used and not the year when they are built.

A way to mitigate the latter issue would be to add a dimension ‘phase´ to the technologies
(F) and their operation (Ft). As a consequence, several equations would have to be duplicated
increasing the complexity with a negligible impact on the results.

B.3 Evolution of efficiency

Technological efficiencies are expected to undergo continuous improvement over time. These
efficiency values are sourced from the Danish Energy Database (refer to [76], [77], and [78]).
Between 2020 and 2050, the average efficiency is approximately 6%, though noteworthy ad-
vancements are observed in specific vehicle technologies, such as fuel cells.

The most pragmatic approach to incorporate these efficiency improvements is to maintain
the technology’s efficiency level at the time of its deployment. For instance, if a Combined
Cycle Gas Turbine (CCGT) is constructed with an efficiency of 59% in 2020, its efficiency
should remain consistent in 2025, rather than adopting the efficiency of a newly constructed
CCGT in that year. This approach necessitates the inclusion of an additional dimension to
all variables associated to efficiency, such as operation of technologies (Ft), storage level and
power.

To maintain a simple formulation, the authors chose to keep one efficiency per technology
(i.e. the one of the representative year. Despite this approximation, it enhances model in-
teroperability as it is the same formulation as in EnergyScope TD. In a prior study, a global
sensitivity analysis (GSA) was conducted to evaluate the impact of efficiency [54]. The results
revealed that the influence of efficiency on the objective function (total cost in the study) and
decision-making was negligible. The only exception was observed in the private mobility sector,
where there was a 6% variation in investment decisions between fuel cells and electric cars.

B.4 Cost and emissions of the transition

The impact of greenhouse gases GHG decreases with time as they transform into more stable
forms, such as limestone for carbon dioxide CO2. [95] highlights that the cycle period of GHG
transformation is hard to estimate, but it is likely much longer than 500 years. To compare the
impact of different GHG, the global warming potential (GWP)of these gases is expressed for a
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given time horizon, usually a century. As our time horizon is 30 years, we assume that their
GWP is constant over the optimisation horizon.

The cost formulation proposed in Section 2.2.3 is inspired from Prina et al. [5] where it
is broken down in investment, maintenance, operation and salvage value. In the proposed
formulation, the salvage value accounts for the cost of technologies available after the time
horizon. However, if a technology is removed prematurely, its salvage value is not accounted
for. This approach is different from Prina et al. [5] where technology prematurely removed
are, from our understanding, are imposed by the users and thus not mathematically optimised.
We emphasize the importance of not accounting for the salvage value of a technology that is
prematurely removed. If it wasn’t the case, the model could install an expensive infrastructure
only for five years and then remove it. Thus when removing a technology prematurely, the
salvage value is not recovered at the end of the optimisation horizon.

In the proposed formulation, the numerical value of the cost is based on the one at the
installation of the technology, not in 2050. Goffaux [96] analysed the impact of five different
formulations, including and excluding technology decommissioning and using different annuali-
sation factors. The results indicate that only one formulation has a major impact: accounting
or not for decommissioned technologies. This conclusions is aligned with the work of Poncelet
et al. [60], who emphasizes the importance of accounting for salvage value to prevent penalizing
capital-intensive assets towards the end of the model horizon.

The study on the annualisation factor performed by [96], shows that there is a limited
impact on the results. A variation in the storage capacity is observed with an increase of 10%
capacity (GWh) when annualisation factor is lower. This trends reflect that a higher interest
rates encourage later investments.

C Approaches to reduce the computational time: More detailed
analysis

This appendix aims at digging more into the details of the differences observed between the com-
putational time-saving approaches and the reference case (i.e. hourly perfect foresight model),
presented in Section 4.2.

C.1 Myopic versus Perfect foresight

Similarly to Nerini, Keppo, and Strachan [61], Figure 14 shows that myopic optimisation ends
up with a slightly more expensive energy transition by 2050 (i.e. +3.2 b€2015), compared to
the perfect foresight, despite the savings done at the early stages. Even though this over-cost
is negligible compared to the overall cost of the transition (i.e. ∼1000 b€2015), this is explained
by the early investments in renewable technologies (i.e. PVs and wind turbines) boosted by the
significant salvage value retrieved from investing in the consequent reinforcement of the grid.

Figure 15 highlights this as infrastructures and the electricity-technologies account respec-
tively for 83.2 and 61.2 b€2015 in 2030 whereas the overall cumulative investments, so far, are
421.3 b€2015. The significant lifetime (e.g. 80 years) and investment cost (i.e. 368M€/GWVRES

[44]) of the power grid, and, on a smaller scale, the district heating network, explain why the
myopic optimisation opts for a higher investment in these infrastructures, at early stages. Sim-
ilarly to what Keppo and Strubegger [97] observed in their studies, these early investments
consequently lead to more investments, later in the transition, to renew technologies that have
become too old before 2050: during the phase between 2045 and 2050, the myopic approach
needs to invest in 9.2GW of PVs that have been installed 25 years before whereas the perfect
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Table 7: Exhaustive general comparison between the three approaches: Perfect foresight with hourly
resolution (PF), Myopic with hourly resolution (MY) and Perfect foresight with monthly resolution
(MO). Differences with the reference case (PF) below 1% are not shown (≃) and ones above 10% are in
bold.

PF MY MO Units

Computational timea 830 373 2 s

Costs in 2050

Total transitionb 1004 ≃ -2% b€2015

Cumulative opex 528 ≃ -3% b€2015

Cumulative capex 636 ≃ -2% b€2015

Salvage value 160 -1% -5% b€2015

Primary energy mix in 2050

Total 368.0 ≃ +2% TWh/y
e-hydrogen 15.6 ≃ +2% TWh/y
e-methane 41.0 +6% +51% TWh/y
e-methanol 54.8 ≃ ≃ TWh/y
e-ammonia 40.7 -10% +55% TWh/y

Electrification in 2050c
Systemd 63.3 ≃ -27% TWhe
Industrial heate 12.3 -7% -98% TWhth
Decentralised heate 73.9 ≃ -13% TWhth

Year of full VRES-deployment
PV 2045 2040 2040 -
Wind-offshore 2030 2025 2025 -
Wind-onshore 2025 2025 2025 -

aThese computational times were reached on a 2.4GHz 4-core machine.
bAs detailed in Equation 16, the transition cost is the sum of the cumulative opex and capex, salvage value

being deduced.
cThe electrification of the other sectors (i.e. centralised heat (100%-heat pump), private (100%-BEV), public

mobility (80%-train and tramway), freight mobility (25%-train) and non-energy demand (0%)) are identical
between the three approaches and are, therefore, not presented in the table.

dThe electrification of the system is computed as the difference between the total production of electricity and
the end-use demand of electricity.

eThe electrification of the industrial and decentralised heating sectors are expressed in terms of thermal energy
(TWhth) provided by electrified processes, respectively industrial resistors and decentralised electric heat pumps.
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foresight, by smoothing its investments over the entire transition, has to renew only 2.5GW of
PVs.

2020 2025 2030 2035 2040 2045 2050

-3.0

0

3.2

Cumulative total cost difference (myopic - perfect foresight)
[b€ 2015 ]

Figure 14: Cumulative total cost (i.e. opex+capex-salvage value) difference between the myopic and
perfect foresight (PF) approaches. Positive values mean that the myopic approach is higher than perfect
foresight.

In 2050, the capacities installed in the different sectors, the design of the system in other
words, are very similar between the two approaches. The passenger and freight mobility sectors
are the same where differences smaller than 1GW are observed in other sectors. More interest-
ingly, the myopic optimisation tends to postpone the decommissioning of capacities when the
loss of salvage values at the end of an optimisation window would be bigger than the mainte-
nance cost. For instance, in the myopic approach, 0.8GW of industrial coal boilers will remain
installed in 2045 and 2050 or 3.6GW of naphtha-crackers to produce HVC in 2040, whereas
these technologies are not used. This is comparable to the “lock-ins” detailed in other studies
[62, 97] where technologies installed at early stages of the transition remain in place.

Highlighted in Figure 16, the earlier availability of renewable (and intermittent) electricity
consequently accelerates the electrification of the other sectors. For instance, in 2035, 3.7GW
(+75%) more of industrial electric heaters to produce 5.1TWh/year (+130%) of additional
industrial heat. In the low-temperature heat sector, decentralised and centralised electric heat
pumps capacities are, respectively, 2.2GW (+19%) and 1GW (+8%) higher for each of the
representative years between 2030 and 2045, to produce, around 7.8TWh/year (+23%) and
0.8TWh/year (+1%), at the expense of other technologies such as gas heat pumps. Finally,
public trains substitute from 2035 a higher share of the CNG-buses.

In general, due to the formulation of the salvage value (see Equation 22), the myopic ap-
proach is more techno-oriented as investing more in technologies is beneficial, especially at the
early stages of the transition. Therefore, before converging to a similar energy mix in 2050,
the myopic system relies more on local renewables (e.g. solar and wind) than on importing re-
newable energy carriers (e.g. e-ammonia, e-methanol, e-hydrogen or e-methane), see Figure 16.
In parallel, in the near term, the system relies on average more on conventional/non-renewable
sources, like observed in other studies [97–99].
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Figure 15: Sum of the respective salvage value of each sector, per end year of each time window. All
together, these salvage values represent 223.9 b€2015, 53% of the cumulative investment costs in 2030,
and 157.7 b€2015, 24% of the cumulative investment costs in 2050.

Imported 
renewables resources

Local renewables
(wind, solar)

Non-renewables resources

2020 2025 2030 2035 2040 2045 2050

-9.6

0
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Primary energy difference (myopic - perfect foresight)
[TWh]

Figure 16: Primary energy resources difference between the myopic and perfect foresight (PF) approaches.
Positive values mean that the myopic approach is higher than perfect foresight.
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C.2 Monthly versus Hourly

This section compares the perfect foresight optimisation based on a monthly time resolution
with the reference case (hourly time resolution). As displayed in Table 7, the main advantage of
the monthly approach is its computational time (a reduction of 99.8% compared to the hourly
resolution). This tractability represents a significant advantage when several thousands of runs
are necessary, e.g. for uncertainty quantification as it has been performed in [48].

However, averaging time series of end-use demands and renewable productions brings some
discrepancies. First and foremost, variable renewable energy sources (VRES) loose their intrinsic
power intermittency [38]. This will have a series of consequences. Overall, this overestimates
the uptake and emergence of solar and wind power generation and, consequently, overestimate
their share in the primary electricity mix, especially at intermediate stages of the transition
[38, 100] (see Figure 17). In line with these studies, the more there is VRES in the primary
electricity mix, the higher is the error9 with lower time resolution. In 2025 and 2050, where the
share of VRES in the electricity primary mix is respectively 46% and 66%, this error goes from
10% to 18%.

Monthly

Hourly

2020 2025 2030 2035 2040 2045 2050

22

59

66

71

Share of VRES in primary electricity mix
[%]

Figure 17: Share of VRES (i.e. solar and wind) in the electricity primary mix for the monthly and hourly
time resolutions.

When considering the system overall, this averaged time-variability requires a more limited
sector-coupling in the monthly model to absorb the intermittency of renewables. As listed in
Table 7, industrial and decentralised heat demands are less electrified. This leads to 30% elec-
trification of the overall system versus 36% for the hourly approach. This smaller production
of electricity is done to the detriment of direct import of electricity, completely removed from
the primary mix, as assumed to keep on having a higher global warming potential than con-
ventional assets (e.g. CCGT running on gas and, later on, renewable gas and ammonia). Then,
the generation mix in heating sectors or non-energy demands is less diversified, leading the
sharper and later switch of resources and technologies. For instance, lignocellulosic biomass is
“cannibalized” by industrial boilers to the detriment of biomass-to-methanol or HVC. Besides
this, in general, we observe an overestimation of conventional technologies (e.g. running on gas
or oil) generation, either by installing more capacities or having a higher load factor for similar

9Like Poncelet et al. [100], this error is defined as:
∑

i

|supply shareMO
i −supply sharePF

i |
2

, where index i runs over
all technologies and import of electricity and the supply shares are expressed as a percentage.
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capacities. In line with Poncelet et al. [100], this leads to an overall underestimation of the
operational (and investment) costs, as detailed in Table 7.

Finally, in the mobility sectors, there is no difference between low and high time resolutions.
This is due to the fact that these demands are assumed to stay the same over the different hours
of the year (i.e. freight mobility) or have a favorite technology to supply them (e.g. BEV for
private mobility).

C.3 Comparison without restriction on GHG

The outcomes of a model could be limited when the case study is too restrictive. Indeed, ones
could argue that the comparison between myopic, monthly and perfect foresight are very similar
as the energy system is strongly constrained in terms of GHG emissions.

In the following, we perform a similar comparison in the transition pathway without re-
stricting the GHG emissions.

C.3.1 Reference case

Figure 18 illustrates the transition taken by Belgium without restriction on the GHG emissions.

e-ammonia

Biodiesel
Bioethanol

Imported electricity

Fossil gas

Solar

Wind

LFO

Diesel Gasoline

Wet biomassWood
Uranium

Coal

Waste

2020 2025 2030 2035 2040 2045 2050

0

421

554

Primary energy supply
[TWh]

Figure 18: Primary energy mix of a non-constrained energy transition. In this results, carbon neutrality
isn’t reached in 2050. Some fossil fuels remain used.

Similar trends that for the defossilisation are observed: primary energy mix reduces, renew-
able energy integration rises and an electro-fuel is imported. However, some changes reflects
the cheapest option that the system could utilise to reach a cheaper transition, such as using
as little electro-fuels as possible. In this case, only e-ammonia is used for its end use demand.

Instead of analysing the energy system in details, the following parargaphs will investigate
if the comparaison findings are consistent on a different case study.

C.3.2 Comparison with Myopic approach

Several key messages of the comparison have been summarised in Table 7. In the following
paragraph we analyse how these conclusion are affected when the constraint on the GHG-
emissions trajectory is removed.
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First, considering the overall transition cost, the myopic approach keeps on making short-
term savings, i.e. down to -0.2%, before ending up with a more expensive transition by 2050, i.e.
+0.2%. Similarly to the case with an imposed GHG-emissions trajectory, myopic optimisation
invests more, compared to the perfect foresight, at early stages into VRES technologies to benefit
from the significant salvage values of the related grid infrastructures. In 2030, the salvage value
of the infrastructures and electricity-generation technologies account for 80.2 and 56.2 b€2015,
respectively, whereas the overall CAPEX are 404.8 b€2015 by then.

Then, in the case with a prescribed GHG-emissions trajectory, the myopic approach had to
invest more by the end of the transition to renew PV installed more massively at early stages
and that reached the end of their lifetime before the end of the transition. In the case without
this emissions trajectory, there is less an urgency/need for integrating renewables in the system.
Consequently, in the latter case, there is not such an extra-investment to make to renew too
old renewable assets. On top of this, the slower uprise of VRES in the case without emissions
trajectory leads to a smaller difference of electrification of the other sectors between the perfect
foresight and myopic approaches.

Finally, even though the way to get there differs between the perfect foresight and the
myopic approaches, the system designs by 2050 are very similar between these two in most of
the sectors. The main observed difference is in the freight transport where diesel boats are
preferred to gas boats. This can be looked as a result of the lock-in effect where choices made
at early stages, due to the limited foresight, remain in place in the longer term.

In essence, when comparing perfect foresight and myopic approaches, distinctions arise in
minor aspects, while the fundamental conclusions of Table 7 were verified. These variances
have been elucidated in the preceding enumerated points and can primarily be attributed to
the changes in the case study, rather than reflecting limitations inherent to the model or the
comparative analysis itself.

C.3.3 Comparison with Monthly approach

Similarly to the previous section, this one compare the perfect foresight with the monthly
approach. Findings summarised in Table 7 will be screened again in the following paragraphs.

The similarities are even stronger than in the previous section between the hourly and
monthly models. The most important difference is the averaging over monthly values of the
production of PV and wind turbines. This leads to an overestimation of the uptake and emer-
gence of solar and wind power even though, in the case without the emissions trajectory, this
uprise is slightly delayed since there is no more emissions constraint to respect (i.e. 2035 versus
2030 for the case with the emissions trajectory).

Then, in the case without the GWP-trajectory, we can draw the same conclusions as in
Section C.2 when comparing the monthly and the hourly model. There is less sector-coupling
(i.e. smaller electrification of the industrial and decentralised heating sectors) as less flexibility
is needed to absorb the averaged intermittency of VRES. Import of electricity from abroad
is also substituted by this cheaper and no more intermittent source of electricity provided by
solar and wind. We also observe sort of a cannibalisation of the limited resources by specific
sectors. For instance, industrial boilers uses the entire stock of woody biomass to the detriment
of other processes like biomass-to-methanol or biomass-to-HVC. Finally, in the case without
emissions-trajectory, there is also a drastic underestimation of the cumulative OPEX by 2050,
i.e. -5.2%, as this “abundant” and free electricity provided by solar and wind reduces the need
for other energy carriers like gas in CCGT, for instance.

In essence, when comparing hourly and monthly approaches, distinctions arise in negligible
aspects, while the fundamental conclusions of Table 7 were verified.
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[32] T. Brown, J. Hörsch, and D. Schlachtberger. PyPSA: Python for Power System Analysis.
2018. url: https://pypsa.org/ (visited on 02/11/2021).

[33] T. T. Pedersen et al. “Long-term implications of reduced gas imports on the decarboniza-
tion of the European energy system”. In: Joule 6.7 (2022), pp. 1566–1580.

[34] Energistyrelsen.Modeldokumentation – Ramses energisystemmodel. Tech. rep. 2023. url:
https://ens.dk/sites/ens.dk/files/Analyser/ramses_energisystemmodel.pdf.

[35] W. Short et al. Regional energy deployment system (ReEDS). Tech. rep. National Re-
newable Energy Lab.(NREL), Golden, CO (United States), 2011.

[36] R. Loulou et al. “Documentation for the times model part ii”. In: Energy technology
systems analysis programme (2005).

[37] IEA-ETSAP. Times model description. 2021. url: https://wiki.openmod-initiative.
org/wiki/TIMES (visited on 2023).

[38] G. Haydt et al. “The relevance of the energy resource dynamics in the mid/long-term
energy planning models”. In: Renewable energy 36.11 (2011), pp. 3068–3074.

43

https://github.com/energyRt/energyRt
https://github.com/energyRt/energyRt
https://www.enertile.eu/enertile-en
https://ihoga.unizar.es/en/
https://sourceforge.net/projects/electricdss/
https://plexos9.com/
http://hdl.handle.net/2078.1/thesis:40534
https://pypsa.org/
https://ens.dk/sites/ens.dk/files/Analyser/ramses_energisystemmodel.pdf
https://wiki.openmod-initiative.org/wiki/TIMES
https://wiki.openmod-initiative.org/wiki/TIMES


[39] S. Pfenninger and J. Keirstead. “Renewables, nuclear, or fossil fuels? Scenarios for Great
Britain’s power system considering costs, emissions and energy security”. In: Applied
Energy 152 (2015), pp. 83–93. issn: 03062619. doi: 10.1016/j.apenergy.2015.04.102.

[40] B. Pickering and R. Choudhary. “Quantifying resilience in energy systems with out-of-
sample testing”. In: Applied Energy 285 (2021), p. 116465.

[41] S. Pfenninger. “Dealing with multiple decades of hourly wind and PV time series in
energy models: A comparison of methods to reduce time resolution and the planning
implications of inter-annual variability”. In: Applied energy 197 (2017), pp. 1–13.

[42] M. Welsch et al. “Incorporating flexibility requirements into long-term energy system
models–A case study on high levels of renewable electricity penetration in Ireland”. In:
Applied Energy 135 (2014), pp. 600–615.

[43] G. Limpens. Pathway extension of model EnergyScope TD. url: https://github.com/
energyscope/EnergyScope_pathway/tree/v1.1.

[44] G. Limpens. EnergyScope Pathway documentation. url: https://energyscope-pathway.
readthedocs.io/en/v1.1/.
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https://www.febeg.be/fr/statistiques-electricite.

[76] Danish Energy Agency. Technology data for Energy storage. Tech. rep. November 2018.
2018. arXiv: ISBNwww:978-87-7844-931-3.

[77] Danish Energy Agency. Technology Data for Energy Plants for Electricity and District
heating generation - Feb. 2019. Tech. rep. February. 2019.

[78] Danish Energy Agency. Technology Data for Renewable Fuels - 0001. Tech. rep. February.
2019, pp. 1–235. url: www.ens.dk.

[79] J. Schnidrig et al. “Appendix - A modelling framework for assessing the impact of green
mobility technologies on energy systems”. In: proceedings of ECOS 2021 conference. 2021.

[80] J. Rosenow et al. “Heating up the global heat pump market”. In: Nature Energy 7.10
(2022), pp. 901–904.

[81] European Commission. “The European Green Deal”. In: Communication from the Com-
mission to the European Parliament, the European Council, the Council, the European
Economic and Social Committee and the Committee of the Regions. Brussels (2019),
p. 24.

[82] J. Mertens, R. Belmans, and M. Webber. “Why the Carbon-Neutral Energy Transition
Will Imply the Use of Lots of Carbon”. In: C—Journal of Carbon Research 6.2 (2020),
p. 39.

[83] D. Devogelaer et al. “Towards 100% renewable energy in Belgium by 2050”. Tech. rep.
2013, p. 156.

[84] M. Cornet et al. Scenarios for a Low Carbon Belgium by 2050. Tech. rep. November.
Climact, VITO, 2013, p. 119.

[85] Climact and VITO. New scenarios for a climate neutral Belgium by 2050. Tech. rep. 2021.
url: https://klimaat.be/doc/climate-neutral-belgium-by-2050-report.pdf.
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https://www.sfen.org/rgn/la-belgique-repousse-de-10-ans-sa-sortie-du-

nucleaire/. January 2023 (accessed April 17, 2023).

[88] EnergyVille. PATHS2050 - The Power of Perspective. https://perspective2050.
energyville.be/. 2022 (accessed December 2022).

[89] A. Dubois et al. “Multi-objective near-optimal necessary conditions for multi-sectoral
planning”. In: arXiv preprint arXiv:2302.12654 (2023).

[90] Fédération Belge et Luxembourgeoise de l’automobile et du cycle. Automotive Pocket
Guide Belgium - Chiffres clefs. Tech. rep. 2021. url: https://www.febiac.be/public/
statistics.aspx?FID=23.

[91] V. Krey. “Vergleich kurz-und langfristig ausgerichteter Optimierungsansätze mit einem
multi-regionalen Energiesystemmodell unter Berücksichtigung stochastischer Parame-
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